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ABSTRACT

An analysis is presented of two proposed methods for providing ad-

d1t1ona1 gain margin in the stability augmentation loop of the X-15 horizontal

surface control system. Expansion of the flight envelope to higher dynam1c

~

pressures, Mach numbers a.fnd altitudes has made it imperative to introduce

’

refinements in the basic control system. The two methods considered in this

a

report are the '"notch filter" and “hydraulic pressure feedback' techniques.
Both methods have considerable merit, but the pressure feedback approach

-appears to offer the most improvement.
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FOREWORD

This study was performed at the Cornell Aeronautical Laboratory, Inc.
under Contract NAS4-123, administered by the Control and Guidance Branch
of the NASA Flight Research Center, Edwards, California. The study was pri- .

R el

marily concerned with proposed stabilization techniques to be applied to the

X-15 flight control system. Auxiliary data concerning structural interaction .

and aerodynamic damping were also to be obtained as part of the study. The
assistance of Mr. Norman Cooper and Mr. Gene Farr of North American
Aviation in obtaining the necessary background information and structural
data is acknowledged, as is the aid and guidance of Mr, Larry Taylor, the
NASA Project Engineer for this study.
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INTRODUCTION

Structural resonance effects have been observed in the horizontal sta-
bilizer of the X-15 research aircraft. This resonance interferes with the prop-
er operation of the control system. The horizontal surface, because of its
construction, is a very low damped element. This poor damping plus the
axial dissymmetry from the sweepback result in strong coupling of the sur-
face resonance modes and the fuselage. This coupling is observed to be most
effective in destabilizing the stability augmentation system (SAS) in the roll

mode.

Two methods which have been proposed for preventing this poorly
damped surface from limiting the effective gain of the SAS loop are analyzed
in this report. The first of these methods discussed employs a 'notch filter"
in the SAS loop to selectively attenuate the first mode structural frequency.
The other method discussed is the application of pressure feedback to the

actuator valve to produce a more stable actuator plus load combination.

Background information about the form of the structural interaction

and aerodynamic damping to be expected is also included in Appendixes.



DISCUSSION OF THE NOTCH FILTER TECHNIQUE

The "Notch Filter' method is especially attractive since the addition of
such elements does not require major modifications in the surface power actu-
ator, The Notch Filter capabilities are limited, however, since it is a fixed
frequency device., Also, it would not actually improve the damping of the sur-
face. Gust disturbances or other external influences would still be able to
excite resonant bursts in t e surface. The fixed frequency characteristics of
the notch are not too troublesome if the notch design provides a wide enough
attenuation band to cover possible variations in the structural resonant

frequency.

Appendix A is a detailed discussion and analysis of the results of in-
troducing a notch filter into the SAS loop. Appendix B is a discussion of the
transfer function of the structural interaction for the first two modes and
Appendix F provides background information helpful in synthesizing the notch
transfer function. The increase in allowable gain at the first mode results in
a gain ratio (or gain margin) of the Notch Network versus no notch of 0—1-0?7?4-9- =
26.6. The phase characteristic of the notch has been chosen so that phase
shifts in the frequency range of the residual oscillation are negligible. Also
the single mode picture of the phase characteristics in this region and the two

mode picture are not significantly different,

The linear analysis indicated a very stable second mode resulting from
introduction of the notch because of the phase contribution of the notch net-
work at the second mode frequency. This stability characteristic has not becn
observed in the actual system. It is felt by the writer that some further in-
crease in gain can be obtained by experimentally trying networks having phase

shifts in the 214 rad/sec region and negligible phase shifts in the residual os-

cillation region. Since this portion of the analysis is not valid, any gain margin

which would be calculated from the linear picture is subject to drastic changes
when the system non-linearities are included. The notch filter does have sone
additional attenuation in the 214 rad/sec region which can be used as a possible

indication of the allowable gain improvement between the casec of no-notch and

|
|
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the use of a notch network. If the non-linearities remain equally effective,
then a gain increase of approximately 4:1 over the uncorrected allowable
gain for the second mode is possible with the addition of the notch. This
would result in an over-all gain margin of 4 x 0.78 / 0.074, or 40. This
points to the fact that insufficient knowledge exists in the 214 rad/sec region

to make anything but an '""educated guess' about the gain margin.

One thing is certain: the first mode is effectively removed from the
problem when a notch filter is introduced in the SAS loop. Possibly a second

notch in the 214 rad/sec region would stabilize that mode also.



DISCUSSION OF THE PRESSURE FEEDBACK TECHNIQUE

While the '"'notch filter' technique can be considered to be a reason-
able ''first fix', it would still be better to correct the actual trouble result-
ing from the undamped surface-actuator combination. One approach which
is most obvious is to use a horizontal stabilizer with more inherent damping.
The next approach would be to provide artificial damping. With a relatively
rigid actuator, external artificial damping is ineffective since the surface may
be visualized as a cantilever with a relatively rigid supporting structure.
Since the motion of the supporting structure (i.e., the actuator, etc.) is very

small, very little damping can be coupled into the surface near its root.

If this artificial damping is applied through the actuator, however,
it is possible to introduce actuator forces which are of the proper phase and

amplitude to absorb the energy stored in the surface.

The most obvious approach to obtaining this artificial damping is by
the use of pressure feedback to the actuator valve. This can be obtained by
many techniques. Reference 1 describes an electrohydraulic valve which em-
ploys the pressure feedback technique to greatly improve servo performance.
It is of course sketchy, analytically, since such information may be considercd
proprietary. Reference 2 considers many techniques which are similar to the
the pressure feedback discussed later, but again, is also rather sketchy.
References 3, 4, and 5 consider techniques employing pressure feedback ov
the essential equations of hydraulic actuators operating on high inertia loads.
Reference 6 describes techniques for summing load reaction information in-
to the control valve to stabilize large inertia loads. Very littlerwork has
been encountered which would apply to the specific problem discussed in

Appendix C.

The results of Appendix C can be summarized as follows. Pressure
feedback techniques can be applied to stabilize an actuator + resonant 1oad
configuration to a very marked degree. A systematic design technique and

analysis is presented which results in practical values for the necessary

)



parameters to stabilize the servo system. No attempt was made in Appendix

C to present a workable valve for the actuator configuration in the X-15.

Appendix D analyzes the SAS control loop, using an actuator of the

deg/deg/sec

type discussed in Appendix C. The maximum allowable gain K |,
is found to be 2.54 as compared to 0.059 obtainable without any compensation.
The gain margin, or gain improvement, that these results would indicate is
2.54 / 0.059 = 43, The actuator frequency response and phase shift are

greatly improved with pressure feedback of the type analyzed. But the most

important or significant improvement which is possible with pressure feed-

back is the allowable reduction in backlash, hysteresis and control cable

compliance which is feasible without exciting the resonant surface.

The present actuator employed to deflect the horizontal stabilizer
and the reflected load of the horizontal stabilizer are unstable at valve gains
considerably below the present operating valve gain. The actual system re-
mains stable only because of the control cable flexibility, hysteresis and dead-
band which effectively reduce the system gain. If these non-linearities. are
reduced, for example, by locking the SAS servo and the pilot input point, the

surface actuator and its load exhibit the predicted instability.

Along with the structural resonance problem a non-linear oscillation,
resulting from this hysteresis and deadband mentioned, must be kept below
safe and tolerable limits. Any attempt to reduce the oscillations resulting
from these non-linearities by reducing the size of these non-linearities only
tends to destabilize the structural modes. This '"residual' oscillation amp-
litude is a function of effective LS, x K . The present system has marginal
stability at large values of KL;A . Pressure feedback stabilization allows
these non-linearities to be reduced in size as much as is practically possible
without destabilizing the structural modes thus affecting a reduction in the
amplitude of theresidual oscillationwhich would not be possible by any external

fix such as the Notch Filter technique.

Actually the pressure feedback technique automatically generates a

notch at the resonant modes of the actuator-load system. These ''notches"



are inherent in the system equations since it is necessary, no matter what
stabilization technique is used, to prevent actuator motions from existing at

the resonant frequencies,

The question now arises - after this description of the capabilities of
Pressure Feedback ~ is it possible to construct a reliable device (prefer-
ably all mechanical) which will operate the way the analysis has suggested.

It appears that the answer to this question is yes. Not only is it possible to
construct such a device, it is also very likely possible to construct one which

- will fit the present actuators without any major modifications in linkages, etc.

Appendix E describes such a valve schematically. Some comments
should be included concerning some practical problems associated with con-
structing a pressure feedback valve. The lihear picture employed in the anal-
ysis of Appendix C must be modified. The major non-linearity encountered
is in the hydra‘ulic high-pass network. The capillary used in determining
the corner radian frequency, ’/T, , i8 too sensitive to temperature to be
practical. A sharp edged orifice is used because it is relatively independent
of viscosity. The flow-pressure characteristic of this type orifice is para-
bolic, thus the time constant '2'3 is amplitude dependent. For small amp-
litudes, the 'Z‘, value is very small. This will tend to produce a small amp-

litude limit cycle oscillation whenever the actuator has no input commands.
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CONCLUSIONS

Structural interaction and damping has been calculated for the hori-
zontal surface and fuselage. This data, together with pertinent flight control
system data, has been used to determine the effects of two proposed stabili-
zation techniques for the horizontal surface control system. It has been shown
on fhe basis of a linear analysis that both techniques are able to provide a
relatively high degree of system stabilization. The model of the actuator em-
ployed in the notch filter analysis is idealized to such an extent that the non-
linearities would modify the available stabilization of the second structural
mode (first torsion). The interaction between the actuator and its resonant
load is controllable by pressure feedback techniques. The Stability Augmen-

tation System employing pressure feedback - stabilized actuators appears to

be the most effective way to improve the stability of the X-15 flight control

. system.,

Analysis of a complex resonance phenomenon which is further con-
fused by uncertain amounts of non-linearities must always depend upon care-
ful consideration of the effects of these non-linearities on the linear picture.
One must not require the corrective action to be applied in such a manner
where the non-linearities are significant and could drastically reduce the ef-
fectiveness of the desired correction. Pressure feedback techniques are
very effective when considered in the linear analysis, but care must be taken
to not have non-linearities such as valve driction, hysteresis and deadband
of such an amplitude that they are detrimental to the operation of the pres-
sure feedback portion of the control system. In a similar fashion, the lin-
ear picture of the notch fiiter corrective technique is very promising. Non-
linearities of the type which produce phase shifts in the system are vapable

of destabilizing certain modes of oscillation which are otherwise quite stable.

- This is apparently occurring in the X-15 horizontal surface SAS loop since the

linear analysis predicts a very stable system resulting from the use of the
notch filter to stabilize the SAS loop. One can envision an iterative technique
employing notch filters to reduce the gain at successive resonance modes until
the over-all SAS loop gain can be increased to the desired limits. This would,

of course, be a tedious and time-consuming task and it is quite possible that




aerodynamic effects and temperature changes would shift the resonant modes

(especially the higher modes) enough to make such an approach ineffective.

It is felt by the writer that application of the pressure feedback tech-
nique is potentially a better approach and should also be investigated on an
experimental basis. Although only one structural mode was included in the
analysis, the trend observed in the analysis, i.e., the manner in which cer-
tain portions of the equations behaved, seemed to indicate that additional
modes would also be stabilized with little or no difficulty.

t
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APPENDIX A

ANALYSIS OF THE NOTCH FILTER TECHNIQUE
FOR STABILIZATION OF STRUCTURAL MODE EFFECTS

The major reason for the employment of a notch filter for the reduction of
structural resonance effects on a servo actuator is that it provides high attenuation

of the frequency band in the vicinity of the particular structural mode.

The notch filter chosen for stabilizing the SAS loop for the 12 - 14 cycle
resonance of the horizontal surface of the X-15 also had additional boundary con-
ditions. The phase lag in the 0 - 4 cycle region must be very low so that the in-

clusion of a notch filter does not increase the residual oscillation amplitude.

With these requirements in mind a notch filter transfer function was ob-
tained experimentally at NASA Flight Test Center which had these specifications
and which did stabilize the structural mode in the 12-14 cycle region. It was

observed on the X-15 however, that the torsion mode at 34 cps became unstable

at a gain level only a moderate amount ahove the original gain.

The discussion that follows employs a linear picture of the SAS system
and analyzes the SAS system with and without the notch filter for the effects of

one and two structural modes.

The SAS loop equations will be considered in their order of increasing

complexity.

CASE I - Normal SAS Loop with One Structural Mode

Using the root locations of the SAS servo, shaping, and gyro provided
by NAA, the SAS loop block diagram (Figure 1) becomes:

11



ACTUATOR AERROODYNAMIC+ STRUCTURAL
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Since the problem of stabilizing the SAS loop exists at zero dynamic pres-
sure and is relatively unchanged for small L;A values, Lg, is assumed zero.
The resulting roots of the characteristic equation for the SAS loop are:

one zero at: O =0

poles at:
8o, 8
427, 5

= -0.4 %j80 (@
= 171 %j391.5 (@
= 2290 +j140 (@ =322, §
= -#h.5 £j166.8 (@ =188, &
= —V'I’ = -6.667 for T = 0.15 sec

0.005)
0.40)
0.90)
0.46)

i

1

il
I

"
1]

1
[

nwunmuLuyow

The critical pair of roots is located at -0.4 %j80, therefore a detailed look
at the root locus in the region around -0.4 +j80 is necessary. The departure
angle of the root locus originating from -0.4 +j80 and the loop gain level in the

immediate region about this root providce sufficient information to determine the

Figure A-1 SAS Loop Block Diagram l
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maximum system gain allowed for stability of the over-all loop, i.e., the gain

at which some root crosses the imaginary axis into the right half plane.

A summary of the phase lags contributed to the phase at -0.4 1+j80 is:

SAS -26.0°
Gyro © -9.,0°
Shaping -25,8°
Actuator -85.5°

The sum of these lags is -146.3°
Therefore, the departure angle from the pole at ~-0.4 +j80 is 180° - 146.3° = 33.7°,

The product of the distances of the poles to the -.4 +j80 point divided by
the distance from the zero and the radial distances from the origin to the poles
determine an approximate value for K for each unit distance from the pole at

-0.4 +j80.

K= 121,260, 499 365 363 296 , 803  Jso, ! 4, Ix
/88 ~ 188 427 427 322 322 6667 80 8o 80 Ixy

~I
I
K= 000338 r(_I_Y.") I
¥ For the calculated effective ~ *"/Ix
- - = o _ = deg
= 1.36 x 0.02027 = 0.0276and * =0.4/ cos 33.7° =0.481 K -0'059W
(this compares reasonably well with the NASA calculated 0.1 gain when the

x’/]:,‘ value of 0.015 is used).

To summarize Case I, the root at -0.4 +j80 and its conjugate are the two
roots of the SAS loop which first cross the imaginary axis with increasing SAS
loop gain. The gain K has been found to be about 0.059 for the ¢alculated value
of ISV/I,, . The departure angle is +33.7° (positive counterclockwise).

If one considers the total loop gain through the structure I"V/I,, K

the root locus crosses at a gain of

13
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Fig. A-2is an ESIAC root locus of the over-all SAS loop locus. The

gain values indicated are for

" i

T

-10

%\\iﬁ.ﬁ;@g\é@g

s

J \\\\‘E{“‘;‘\“}\

it #ﬁ'ﬂ"‘;{;ﬁ%@:
fasdlsiiaa l:-.._"h.. ‘_.:,.,{..._. LY
s SR
H

s
-0.5
e,

7
T
1114

T
ity i i
i. '\‘:“:333@“‘“ %‘g&%%\ [ +os

H
H
%

i ﬁ

%
s

Ve
I T'., }‘Fﬁ«
S

ete!

-
o

T
T L
o

+j+

Figure A-2 SAS Loop, First Mode Only

CASE II - Normal SAS Loop With First Two Structural Modes

Appendix B discusses the structural transfer function in considerable de-

tail. The transfer function which will be used in this discussion is

80? 80 2i42 2/4
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as § -» 0, @ has a negative value. This is consistent with a right hand set
of coordinates. At low frequencies, the structural interaction produces a coun-
terclockwise roll of the fuselage for a clockwise spindle angle input. This is

in the same direction as the roll produced by aerodynamic moments. Thus,
independent of the way the coordinate system is defined, one must have a set

of loop equations where the low frequency structural interaction for fuselage
roll is of the same phase as the aerodynamically induced roll for a horizontal

stabilizer deflection,

The ""Aerodynamic and Structural Roll Acceleration' block in Figure A-1

will therefore have the following transfer function

L X I I
@ , 136 L 0.36 -~
<L = - — Cx - X
) S ST 4 S s S
A = Ol e | —_— .0l +/
80 80 2142 214
which is approximately
. s?
-9_ = - 52 IXY : - 1943 +z/
3a Iy i-z +.01— +I)( ST ol 24 I)
80 80 2143 214

Fig. A-3 is an ESIAC root locus plot of this case. The departure angle
of the first mode is relatively unchanged. The locus of the second mode pole at

214 rad/sec has a departure angle of 71.6° counterclockwise (calculated).

It is worth noting here that the denominator has a form
Iyey
_ S(Q'"_) —1.;- K
(an )(QZt4)(Q4zr)(Qszz)(Q ee)(1* T3)

l =D

where the @Q; are the quadratic factors for the gyro, SAS servo, etc. This

function D is the form which is solved by a ''zero degree'' root locus.

15
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Figure A-3 SAS Loop, First Mode and Second Mode

The gain & required to drive the first mode roots unstable is modified

slightly by inclusion of the zeros and second mode poles.

The gain is modified by a factor of 0. 934.

K

K

.
therefore, the first mode is unstable for total loop gains of K %x exceeding

0.00152.

The gain required to drive the second mode roots unstable can be

10

8

HA

T
! ‘E.‘._}‘}“““&‘
! ;ﬁ\%&%ﬁ%

o

0.{ &
S

Thus

-1
T
0.934 x 0.00338 x 0.481 (TL‘L)

X
0.00338
0.934 x m’ x 0.481
~— 7
v_v
.0802
0.0749
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calculated by geometry to be

K= 24 247 628 300 459 98 388 /194) (134,294 428, r Iy

6667 " 427 427 " 322" 322 "T85 “'1e8 (290) 8o 80 z/4 2147 T,

0.005 x 214

. =3.3
and cos 71.6° ?
3.39 x 0.00467
- th f = = 0.780
erefore K 0.02027
Thezmaximum total loop gain which is used for the root locus plots, i.e.,
—2¥  for instability is .01583
x

To summarize Case II, the major results from including the second

mode are:

a. The maximum stable gain of the first mode is changed
slightly from 0.059 to 0.075. The departure angle

is unchanged.

b. The second mode departure angle was computed to
be 71.6° counterclockwise and the maximum stable

gain was calculated to be 0.78.

CASE III - SAS Loop Plus First and Second Structural Modes and
NAA -NASA Notch Filter

Since the notch filter selected by NAA and NASA was primarily intended
to attenuate the frequency band around the first structural mode, this frequency

band will be explored first.

The notch filter transfer function selected is:

17



st S g2 5
“8‘-/-2.4- 276 +1 z +0.125 --—80 -/
G (5) = - ' 80

53 2
z4'(:'.24 S +/) =3 + 7.5 -§—+/
4.8 4,8 go? 80

The roots of G (S) are located at:

Zeros:
S - -78, -22.4 (W =41.8, § =1.2)
S - -5.0%j79.8 (w =80, & =0.0625)
Poles:
S = -5.01 %j41.5 (@ =41.8, & =0.12)
S - -589, -10.87 (@ = 80, % =3.15)

In the region around -0.4 +j80, the only root which is relatively close is
the zero at -5.0 +j79.8. If the gain and phase contributions of all the roots are
calculated for this region, then it is possible to obtain an accurate approximation

for the locus and the effective K values resulting from the notch filter.

The filter gain at j80 is: (using distances from the roots to the +j80 point)

589 109 4/.8 4/8 111.4¢ 83 5 1598 /
» » x x =

x x x = 0.032¢
5945 8075 38.8 12/.6 78 22.¢4 8o 80 309

The ‘phase contribution of the notch filter to the departure angle of the root at
-0.4 +)80 is -51.3°,
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Thus the departure angle of the locus from the pole at -0.4 +;80 is:
33,7 -51.3 = -17.6 (i.e., 17.6° clockwise)
Since this departure angle is small, the locus will cross the jw axis
in a region close to the j80 point. Thus the gain contribution resulting from the
distance between the crossing point of the locus and the j@ axis and the root at

-5.0 +j79.8 is still nearly 1/5.

The distance from -0.4 +j80 to the locus intersection with the j@ axis

is approximately

0.4

———— = 0,42
cos 17.6°

Thus the total loop gain required to make the SAS loop unstable at the first

structural mode is:

Ty 420
| = 30.5 x 0.00152 x -
kT 5% * a8l

= 0.0405

where the 30.5 is the gain improvement fesulting from the notch filter attenua-
tion and the ratio .420/.481 is the ratio of distances of the intersection of the
two loci and the j® axis from the pole at -0.4 +j80.. The factor 0.00152 is the
maximum total stable loop gain with 1o notch filter.

Thus, if I"%,” =0.02027, the gain / required to produce instability
at the first structural mode is 1.99.

Figure 4 is an ESIAC root locus plot of the SAS loop including the two
structural modes and notch filter. The roots located at -5 +j41.8 cross the
Jw axis at a gain of approximately 0.6. Also, it should be noted that the
second structural mode roots now have an advantageous departure angle and they
cross the jw axis at a total loop gain of about 10. Thus it would seem that the
notch filter has ''gain stabilized" the first mode and ''phase stabilized' the sec-

ond mode.
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Figure A-4 SAS Loop, First Mode and Second Mode Plus Notch Filter

The departure angle of the second mode root locus, sans filter, is +71.6°;
the additional phase contribution resulting from the notch filter at 214 rad/sec is
+45°. The departure angle is therefore rotated this amount to a value of +116.6°

(counterclockwise) which is in a direction of increased damping.

Unfortunately, the physical entity does not exhibit this extreme stability
predicted above. The mechanism (non-linearities, additional coupling effects,
etc.) which produces this instability is beyond the scope of this discussion. It
would still be possible, though, to add phase stability to this situation by pro-
viding phase shift at this 214 rad/sec region sufficient to ''phase stabilize' this
mode similar to the above picture. Of course, large amplitude non-linearities

again destabilize this mode - but possibly at a higher gain.

To summarize Case III, the notch filter provides considerable gain im-

provement insofar as stabilizing the first structural mode. The linear analysis
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also resulted in a stable second mode which is not the case in reality. The root
locus of the second structural mode remains close to the jw axis, thus al-

lowing any inherent non-linearities to easily de-stabilize it.

A simple phase locus plot can illustrate what can possibly be happening:

locus of linear system

I

,I'*locus of the system for the case where the
) /' non-linearity contributes an additional
. ! 10° phase lag

A

Mlocus of the system for the case where the
non-linearity contributes an additional
20° phase lag

It is possible to improve the allowable loop gain by properly "phase sta -
bilizing' the second mode. Whether phase lead or phase lag would be the most
effective cannot be determined theoretically. 'Cut and try' techniques must

be used.
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APPENDIX B

CALCULATION OF STRUCTURAL INTERACTION
FOR FIRST BENDING AND FIRST TORSION MODES
OF THE HORIZONTAL STABILIZER ON FUSELAGE ROLL

If only the first two normal modes of the stabilizer are considered (i.e.,
first bending and first torsion) the resultant transfer function for fuselage roll
as a function of horizontal surface spindle angle including the effects of all shear
and moments consists of a quartic over a quartic. This is recognized to be in-
accurate as 8 —» 00 but since this is only the second extension beyond the

rigid body picture, it is not surprising that the transfer function has this form,

Actually, the calculated interaction terms are very nearly correct to
cancel out the 84 term. Therefore, the order of the numerator equation

would be automatically only second.

The fuselage roll / stabilizer angle transfer function,,@(s), can be ex-

pressed as

@(s) (B-1)

(s) =
9 8,(s)

(s%+ @})(s*+ @;) - B,5%(s"+ w3)- B, 5%(s%+ w,?)
(5%+ wA)(s*+wf) — B,5%s 3+ @) - Py 5%(5% +0,)
—1 (B-2)

(omitting the damping terms, which are small).

I
The calculated values of *71'“ , B, , ¢z , etc. are

I,, = 2347 1b ft?
I, = 3600 x 32.2 lb ft?
I’% = 0.02027

0 4
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@ =1.35 l
@,= -0.3698 3
10. 65 x 103 I
= = . 2
¢3 T, 0.09
3 -.i
@ -L1:41Tx 107 5 0122 |
4 Ix

The resultant equation for Q(S) (omitting damping) has a numerator

function

+0.0198 S* - 7260 S +2.93x 108 =0

The accuracy of the calculations for ¢, and ¢‘ are not on such a rigid foundation
with respect to the structural data that a slight readjustment cannot be allowed to

simplify the form. The resultant resonant peak heights are not materially af-
fected by the change.

If one sets ¢, = 1.36 and ¢, = -0,.36, the numerator of ¢(S) reduces
to

ot [0+ 080-0)] + oot =0

s* | w?x 136 - @)t xO.JS] rwlwl =0

i

7780 s* - 2,93 = /0

850

yielding roots at

S = +194 rad/sec

For small damping, the roots of the denominator,
[I- (@5 + “’4)] st + [“"2('°¢4)*“’:("¢3)] s?rwfw, =0

are S = xj84.2and S = xj215
24
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Small values of damping do not affect the imaginary parts of the roots.

These approximations are not accurate, of course, when computing the

height of the resonant peaks. The damping must also be included.

Expanding the denominator of (B-2) with damping terms included results

in:

(I- 8, - B,)s*+ [zg,w,(/-¢4)+2g‘w, (/-¢,)]s3
+ ["’,z“"¢4)*w¢t("‘¢3)+4;’, gga’lc"z ] sz

+(zx,w,w:+2:,0,0,‘)54-@:‘02, =D (B-3)
For small &, and (2 , resonance exists when
(1-05-8)5* +(0} + 0 -0, w] - B, 0*)5%+w,* w,? =0 (p.y
At resonance the remainder in the denominator becomes

[zg:wl (I’¢4)+2gz“’z(/”¢3)] $’+4z:,gzw,w,s‘

(B-5)
2 z =
+(2;1wf“’3 +z;,o,w, )S = Ap
Resonance occurs at S  values close to j®, and jwyz . The re-
mainder, Ay is not too sensitive to values of @ , therefore jw, (/+4,) and

jo)z ("‘Az) are reasonably accurate values for substitution into AD , where
. w,(l+4a,) and wz(HA,) are obtained from solving for the roots of (B-4),

A, and B, are small quantities.

Since the odd power terms are the only significant ones in (B-5), setting

S=jw results in

25



-%-’-’- = 2‘:’.‘"’,“’; [w,‘-w'(/—gs,,)] v 2%, 0,0 [02-w*(I- ¢,)] (B-6)

if w = wl(l -sA“) and ;’z=;'=§

w,
= w* | 3 ——F -+ ¢
f ( *A') a’"("‘.Al) 4

4p,
2j§

w,

3 ¥ —_ -
+ W2 @7(144) W2 (1+4)? I+ @y

For small A, , this reduces to

Lp 3 [ w, @, W, ]
—t =W, w, (1+38) | 2 (1-24,)-—+—@, + B, - 24,

W nasoNANCE
gince A,= ——-(-"-———-—l for this case

a).",,““o‘ = 84 rad/se’c if ), = 80 radians,

therefore A, = 0.05.
Ap,
. =w'
2y

= 2.335 w,%w,

Swy 145 [2.675(0.9) -.374+.374 ¥0.0122 +0.092 —o.:o]

where @, =1.36, @,=-0.36, @5=0.092, @, =-.0122

@, =80 rad/sec, and W, = 214 rad/sec.

In a similar fashion, the value for the denominator at the second resonant

mode can be computed to be
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By=(-0,- 0, +By ¢ 8,)5% (26,0, (- B,)+ 26,0, (1-0,)] 5

AD,. 3l ¥ w, W,
—_— = (/+30,) W0 —_—(1-24 )-__+_.._¢ +@,-2A _
25 3) 12 [ 2 w, 3 4 2 (B-8)

Wersonance = 215 rad/sec, w, = 214 rad/sec, A, = 0.00467

L 4 A
S0 o o w,wy” [0.374 (991) - 2.675+0.246 + 0.0122 -0.00934]

2%

Op, 3
—_—a 2.035 w,w
28 e

The numerator of Equation B-2 when expanded has the form

(1-9,-8)8% + [280, (1-8,) + 28,0, (1-0,)] 52
+ [@R0-0 v @, (1-0,)+4 8, 5,0,0, | 5*

(B-9)
*‘Z‘a“’o“’az +25, 0, w,?)s + w0 wE =N

Substituting the condition for resonance (Equation B-4) results in a remainder

in the numerator

(B-10)
+[48,5,0,0, - 8,-8)0,% - (8,-8,)02 |s* + (250,00] +28,04,0,7)

For small § and ;z

b,= [‘¢3° ?,) +(@,- wz)] s+ [(¢,‘ D)y +(0y- B, )/} ] 5*

when $§ -ja)

Ay = [(#,-2)+(2,-8,) |0*-[(8,- B) @0 +(8,- B,) 0 | 0?

= (@y- BN wy-wf w*)+(8,- B,)(w, - w,* ©*) (B-11)
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Using the expressions for resonant frequencies of w,(/+4,) and an(HAz)

Equation (B-11) can be written as

. ()
B, = (1+38)0; 03 (B4-8) [ @, (1+4,) 2 }

w, @ (1+4)

; ”;(I“'Al) wl
+w’w, (/*30,)(¢4'¢‘) w; - w(l"'d.)
w,(1+4)) @,

w, @, (1+4,)

-y, (1434 )[(a a)( )+:;‘(¢4-¢,)2A.]

In a similar fashion, A,,,‘z can be found:

2
4y, = Ww(P, - ¢,)(a;: )w ,@>(2,- @ )(9- - -E-)

wg(’*ﬁ;

@y
@130, @, ¢)( - s 4,)) (@,-8)24,

Using the values for a),, w, a, , Az, etc.,
¥ |
by, = Wyw" x 3.16
by, = w,@,° * 0.782

Therefore, the magnitude of the resonant peaks can be calculated to be:

AN 3.16
. = | 36.2 for ¥ =0.005
and Ap, ~ 2335 x2%
A 0.782
s _ = 38.5 for ¥ =0.005

Ay, T 2.035 x 2%
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To summarize: The damping ratio assumed (0.005) results in amplitude ratios

at resonances of A

N Ly
—1\= 135 and 2l = 30.5
D, 4y,

Because of the choice of @ and (B, , the transfer function @ (S) has

the form

sz
Fs) = - 22 ('mz ”)
Rl el
! +
842 216%

assuming negligible damping.

Separating this into two components

B(s) = --= ) - F
I, S 4 _..5_z+ !
84% 215

Thus the more complex equation for (S) can be written to include the damping.

sy

5o = - In +1.40 0.40
L, _§:.+0.0I-—5-+[ S L0010 -S4+
84% 84 2152 2/5

result in the difference between the

The approximations used in obtaining
two set of numbers, i.e., 1.35 as comp:red to 1.40, etc. If K, and Zz

were not the same and if ¢. and ¢2 were less fortunately chosen, it would
be necessary to obtain the peak amplitude ratio by the more complicated approx-

imation technique above.

If the final @'(s) transfer function is readjusted to have resonant peaks

at 80 rad/sec and 214 rad/sec and a gain changing pair of zeros at +194 rad/sec,

- s? +1/ Tuv
&s) = 1947 ] L
== 2 2
(5 +,or-§-+/)( S* o1 3 +/)

80% 80 2142 214

the transfer function has the form
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This can be approximated by

I
136 42X 0.3 Zx¥
Pls) = x - Ix_
s* S s? s
$1001= 4| 5+0.0l —— +|
80 80 214

Any technique which is too sensitive to changes in the above § (5)
would not be a very logical approach to stabilizing the SAS system. Therefore,
it is felt that the accuracy of approximation is not too critical and that precise
knowledge of it should not be necessary for the scope of the analysis in which

this data is employed.
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APPENDIX C

ANALYSIS OF PRESSURE FEEDBACK STABILIZATION
OF A HYDRAULIC ACTUATOR HAVING A RESONANT LOAD
AND A FLEXIBLE SUPPORTING STRUCTURE

The equations for an actuator transfer function are derived on the basis

- that the device is a hydraulic boost actuator with mechanical command inputs

determining the position of the cylinder. Fig. C-1lis a pictorial drawing of the

servo configuration.

X, —> T SUPPLY

| Xp
m
| X i
o I_._,ci. L 4
P Xm

Figure C-1 Pictorial Diagram of Servo Actuator and Load

The schematic of the mechanical coupling is shown in Figure C-2,

Xp X Xy
/ :——F + & :——P +ﬁ .r—-’ +
Z ; ) . .
7, Kp | !
2 | My @ m, —ANW—1y m
Yy :” INTERNAL
; “ PISTON FORGE
7

Figure C-2 Schematic of Mechanical Coupling of Servo Actuator
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The equations of motion can then be determined by computing the acceleration

on each mass.

mp)@: "(pxp'“p*p*“(’.‘c‘*p)’m\, (C-1)
mcS(.c-PA-,.‘at()?c').(,,) 'ﬂ()?c-icm)‘.y(xc-xm) (C-2)
m¥ = B (%, - %)+ K (X, -X,) (C-3)

These equations can be expressed in Laplace operation form and written

as a matrix:

- - - —
m¢5'+(a4¢p)s+y¢ -«S o Xp -PA,
-a$ m,S*s(wep)S+k  -(BS+K) X, | =|+PA,
(C-4)
0 ~(8S +K) mS*aS+K X oy 0
 — —J L 4J4 L
One can then solve for the various motions, e.g.
M,S"(d*a,p)s-ﬂ(' ‘015 "I
-aS myS*fu+8)S+ K +!
o ‘(Iss"z) O PA IHl
X_ = PA «PA_
" T m,s‘+(u+a')5w, -aS o T T|D| (€-5)
~aS my SPe(usp)S+i - (BS+K)
o -(8S+k) mS%.gS+k
32
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where

|H] -

mpsz+ap5+ldp -2S -1
m, slsps+K mcs‘.t(w,e)s,«/e +]
-(8S+X) - ~(RS+K) o

(’”-p*“é)sz‘(¢¢‘ls)5* (Kekp) myS*+pSsk
mS? | m,S*+aS

(]

+] +/

+!

o

(85+k)

= 4.(/55*/()[-()"0 J-I»_P)Sz-(a_', +ﬁ)5-(I(+H_P)-(m$z+,35+l()]

One must then construct a block diagram of the actuator showing how

the various flow rates, etc., result in an output cylinder displacement.

X;

PRESSURE
FEEDBACK
BLOCK
Xap PA,
Xy )?c ! Xe
| K’ Ar e —— 4
~ P PA,, S
xc
-x‘p
PA,,
A
Figure C-3 Block Diagram of Servo Actuator and load Interaction
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t
k.
L
1
i

where
X; = input command position, ft
Xc = actuator output position, ft
xo.p = pressure feedback valve displacement, ft g |
= actual valve displacement, ft
= flow rate / unit valve displacement, ft3/ Sfetc .

= fluid flow rate into cylinder, ft3/sec
volumetric rate resulting from cylinder motion, ft3/sec

= volumetric rate resulting from piston motion, ft3/sec

L O OLP K
a

= volumetric rate error which determines internal pressure

ft3/sec

= total area of piston faces, ft2

|

= area of one piston face, ft2

bulk modulus of fluid, 1b/ft

< W > >

= volume of one chamber, 3

KoY

leakage between chambers

The actuator equations resulting from this block diagram can be ex-
pressed as an xc/x‘- transfer function which includes the effect of the support
structure motions on the valve displacement. For position errors where this
cylinder displacement is measured relative to the piston, the effect of support
flexibility is considerably less and these equations are not the correct ones.

For that case, output would be Xc- X_P for X input commands.

é
Let the pressure feedback block have the form

Xep | K375
P TS5+

and assume the leakage K,

2 is negligible (any leakage also tends to provide damping
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3

but the fluid flow losses severely limit this technique for stabilizing a servo

piston).

One can therefore form the set of loop equations which will result in an

expression for the over-all transfer function.

For ease of handling, let the various determinants be defined as:

m,S%e(uea,)s+ K, -1 o
'Al = -a$S ol -(8S+K) (C-6)
o) (0] MS‘*,SS“’M
-aS ~1 , o
8] « | mstoldlsee o (asen
(C-7)
1 -(eSrk) ) mS®+85+k
m, S (asag)Sei, -4 S o
|D| - -aS m,S*+(urp)S+K -(B8S+K) (C-8)
o -(As+k) mS2+85+K
‘ ) .
myStea,S ¢k, J o
NS PR 0 | e
| -(8S+K) 0 mS*+B5+K
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From the matrix expression (4), one can write expressions for Xc ,

X,).( , X, etc.

e % Xp
X, =PA_ :g: % =PA_S
x,=Pa, 12! -x =P
P p-rﬁl_ = AS

From the block diagram (Fig. C-3)one can write

X, Ba, |A|

@ - v Pl
BA~r
PAr,  Tsv
- BAA, |B
BAAy |IB|

BAA

5

| Al

»)

|B]

=

(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)

.




P 1 v

but since . ).(c_ !
xc = QJA_
Q, I+A e
Q
thus
. B4, 14| BA, 1ol
Xe . v__|D| v__IDl .
a, T EAA[IAL B C 7, AR [E (c-16)
v {IDl "Dl v Dl
therefore
1. K,BA, |A|
Xc - S Xc - SV |D___'l (G-17)
X, = O A [E :
v "% PV )
Also, from Figure 3, one finds that v
. BA: A
p - Xc . | ) [} - -y ! ll___ . ’
X A - BAAy | Y
@ @ 3 4 v = |D| ApS 1D
P B
. - SV . )
e, T BAAL IEL (et
v D]
] P K,P “5
since , —
= ! , P=X SV e
Xy O "[, BAAy |E] ] (C=19)
v D]

the pressure feedback is expressed as
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K,B
X = Taklss p = 731(33 sV X (C—ZO)
ap 2,5+ ¥,5+/ |\ |+ BAAr EI |7
v |
The valve position is expressed by the equation
= - - Cc-21
Xy = X; =X, =X, (C-21)
which results in the equation
Xe
Xe . v (C-22)
x‘ I,'. ﬁﬁ..;. -_XL
xlf XV’

Equations (17), (20), and (22) result in the over-all actuator transfer
function:

K,BA, |A|
Xe . sv__ D]
X, T, B, |El , B KK, |, BK A, A (C-23)
v |p] V(%541 sV | D|

If equation (23) is expanded, it becomes an 'algebraic nightmare' and is
impossible to analyze. It therefore becomes necessary to analyze (23) in its
present form by "dismembering' it to exhibit the effect of 3 N " SN AN 1

X v ' s 5 '
etc. on the final .Z€ transfer function.

b ¥

Setting the denominator of equation (23) = 0 exhibits the roots of the char-

L . b4 .
acteristic equation. These roots are the poles of the —S.  transfer function.
é
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They are also the poles of the transfer function expressing the reaction force of

the load on the actuator _Sz”' X,,,
' X;
j» BAAr El (KBA,  |Al A BZL KK (C-24)
VD SV 1D T V(7,5+)

By féctoring, (24) can be writfen as

B AA =2 L ""35|D|
B ™ A Ay - (C-25)
"B\ "EE | msom | T °
|E| |A|
. J
Therefore, for large %. (3 >> AL.,.) (25) reduces to
K, [ k ]
e A |l +r,s(;f|D|+|A|) . (C-26)
S| £| (¥s5+1)

This is a valid approximation for hydraulic systems since the effect of
B
v °r the roots of the characteristic equation is very small. This has been

determined analytically by the writer using root locus techniques similar to the

ones discussed in later portions of this analysis. Pneumatic servos having small

- obviously cannot make this approximation.

v

If there is no pressure feedback, (26) reduces to

K
2 A

AT -0 (C-27)
s||

]+
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Expanded, (27) becomes

m,,sz,.,',s +Kp . 0 _(p5+z)
K, -5 +1 ~(85+K)
A o o mS2+85+K
|+ -
(7 + mp) S2+(B+u)s frK,) O -(85+x)
S M, 52485k s =(B5+K)
-(B5+¥) ) mS2+Q85+K

which results in an equation of the form

K,
e ";" (M,,S"qﬁ %55+ U,)(ms‘+/954 IJ) o (C-27)
T
' S”(m,m,)S"(ﬁm,)ﬁ(euz,)](msz+ps+ld)~(ﬁ$+ K) }
for the expression for the roots of the characteristic equation of —;5- as a
K, i

function of valve gain —

The term -(ﬂSoK)z in equation (27) has very little effect on the roots re-
sulting from for values of /(.Pé K and m,, m, << m.

The major influence is to lower the value of the roots of (mS%+48S +M) .
For typical values of y , 8 , K, etc., the natural radian frequency, &, , of
the resulting poles becomes

4 7
. |x .[__z_”
a’. -/m K-‘-Kf

which is the expression for two springs in series,

The damping is increased only slightly for the 8, m , K , etc., values

which are being considered in this analysis.

If, for example, we assume H’ s 4K and &

p 18 such that K-P = 0.2, then
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-

for the X-15, representative values would be

= = 6 =

L P 2 ypmp QP aJ_P vV1.49 x 10 1220 rad/sec
= 488

Ko =1.49 x 10° w,, = 89 rad/sec

K =0.372x 107 m, = mp = 1 slug (assumed)

m = 47 slugs

/B =83.6 (for ¥ =0.01)

Therefore, equation (27) becomes

'I;L (534885 +149x10%)(475%4 83.65+0.372x10°)
O=/+ ~

s [(25%57/.53 4186 /0%(475%+8365+0.572x10%)-(83.65 40372 ,a‘)'T

This can be reduced to

2 2
_‘f'.( S o402 (i*o.oz—su
0=l+ A \1zz0* 1226/ \ 89 89
=

2 2
Sl125(3° _ 4102975 s/ -5- 10025 41)-25[—5_ 4
964.3% 964.3 g9% 89 4450

A subsidiary root locus of the denominator or a simple solution of the
fourth order equation resulting from the combined terms results in the charac-

teristic equation having the following form:

2 2
._E.'.. ( L) +0.40 5 +I) S +0.az—§- +1/
A \/220% /220 892 89

2 z S
s[—S +o.297——§— +/ S +0.082 —— +|
964.3% 9%4.3 go* 80

For values of _.'E.L = 30 (the valve gain of the X-15 actuator), the closed

O=I+

loop roots are
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S = .55 y
S = +3 £j83. 1 Poles (functions of —;\L )
S = -143 £j953

= -0.89 +j89 } Zeros (fixed)
= -244 +£j1120

Since this is a description of an unstable actuator, it is obvious that the
valve gain existing in the X-15 is reduced in this loop (i.e., the flexibility, etc.
of the supports are not sensed by the valve because of the hysteresis and valve
friction in the present system). If some of this hysteresis, etc. is reduced, the
present X-15 power actuator is observed to be unstable. Since it is extremely
difficult to assign a linear gain to this situation, it will only serve to show how
the actuator frequency response would appear to be if the gain was reduced to a
value where the roots are stable. This low gain would drastically reduce the
actuator frequency response. Since it is interesting to find the phase shift in the
20 - 40 rad/sec region resulting from this actuator model, a simple phase angle
solution was made ignoring the effect of the low frequency real pole. The con-
tribution to the total phase lag due to roots at the 80 rad/sec region was less
than 2° lag to 40 rad/sec. This is a negligible term. It is therefore realistic
to ignore the phase effects of the structural roots when considering the residual

oscillation problem.

If pressure feedback of the type shown in the block diagram (Figure C-3).
is included, the position of the zeros of the numerator of (26) is modified in

such a manner to increase the damping of the roots of the characteristic equation.

These zeros are located at the roots of

Ty K,
A,

’ |A| ('Z‘,SH)

5|2 (C-28)

o=
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Let

and

2
m’S +af,5 +I(+,

m, S3+8S+k
~(85+k)
2
m, S 4e,S +Kp
m,St+85+K

—(85+K)

It can be shown that

Ip| = s*|F|+as]| 6]

Thus, (28) can be written as

O =

The position of some of the zeros of (29) is a function of oL .

7, z, [s

| Fl+ 6] [s*

(85+4)

m52+/3$+//

-(85+K)

mS*+485+K

(‘t’ S+ |A|

pendence on & is exhibited by a subsidiary root locus of

or

Expanding (30)

0 =5 |Fl+a |6]
0=1+ «l6]
s|F|
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This de-

(C-30)



(mp+m,)S*+{a,+8)S+(Ksky) O -(8S +&)
@ mS%85 + & ~(B5+k)
-@S*k’) mS:+8S5+K .
0=]+
m,S'+a,5+K, O 0
5 | mS2epsek m, -(85+K)
"(/95*%) m mS*+85+K
o ({(m,m‘)sﬂ(u, +4) S+(/(+/4,)](m5’+,45+z)-(,@5¢/()z}
O = 1/+

s ((M,Sz “4,$ k) [’”c (m5‘+,eS+ld)+ m(@s +/()]}

This reduces to

o
wem,

[( "'f"’c)s‘,«{ "f"‘)5+l}(1s’+£5+l _’fﬁi’)-_"_ B s, 2
\‘(-JVP \K‘I{p [ 4 K K ""-P K (C-31)

O =
m
s (2252 %P 54 mm,_ g2, P,
where mem determines the closeness of the roots of (30) to the roots of IGl .
L 4
(-

This locus determines the limitations of the pressure feedback. Large
values of &« reduce the effectiveness of the pressure feedback for stabilizing the

actuator-load combination.

ft
For the actuator in the X-15, & is approximately 4200 1b/ sec - Therefore,
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mem,

Using the m, K, etc. values in the example above, (31) becomes:

s, AT s
s2 s s2 s
+0.40 +/ +0./1388 =
S\ 1220 1220 6l62 ce /!
or
2 2
° _,0291 -2 412,032 5 .
94.3 964.3 80 80
= -48
s2 s S

4040 _S_ +/
1220 ele?

+ 01388 —+
0 élé /

1220*%

Figure C-4 is a root locus plot of (C-32).
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Figure C-4 Root Locus of Equation C-32 for & Variations
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= 87.5 and the roots of (30) can be evaluated by a root locus plot of (31).

(C-32)



For & = 4200, these roots are approximately

-35 %j75, (-10,000 +)
and  -143.5 %j953

The roots resulting from the resonant load have been moved to a fre-
quency and damping of @, = 78 and % = 0.448. This is the limiting value of
damping that pressure feedback will be able to provide for the amount of internal
actuator friction & which was assumed. The root locus of (32) also shows the

improvement possible if & can be kept low.
Returning to equation (29), restated here,

Uk (s|r| ‘o |G|)sz

A
iy » (C-29)
o= (2’,S+I)|A|

one must analyze the effect of K, and 7, on the root locati ns of (29), given the

values of the most predominant roots of S lF'I+¢|G|.

As S — 0, (29) becomes
Uy Ky sz o Kok
Anp I(,Pld

O=1+

= A,F

Thus (29) can be written as

2
Ty Ky 52(5 +,896_5_+1)(_2;+0.297 S +l)( S +/)
/

O= |+ Ar 78 78 964.3 964.3 0,000 (C-33)
(‘Y’S-&l)lAl._’_._
. Ir.’/(f,
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Equation (33) can be rewritten to determine the effect of Hs and TJ

separately:
f Kyor (s S ) s? S
= + +0. +0. ~
0 = Ty Iek,,'A' A-.-s e 1089 Sl Soat 0297 e+ S
(C-34)
/
+

i, A

The term in the square brackets approaches

ot 1 S( st +0.896 S +1 s 40297 S
X e ), P 3
Ay 783 78 964.32 064.3 !

for large lds . This is not too desirable because of the root at § =« 0 which

would result in low actuator frequency.

By a root locus plot of the term in square brackets in equation (34),
Fig. C-5 one finds that no appreciable increase in damping of the structural
roots is obtained for I(, > 10-6. Reasonable values of k3 lie in the range 1 x 10-6
to 2.7 x 10-6. The best balance between the position of the real root and struc-
tural damping for the problem being considered is about MJ =1.3x10-6. In
more common units, this is a valve displacement of 0.0225 in. /psi differential.

Acceptable values would lie between 0.0173 in. to 0.061 in. /psi.

For U, =1.3 x 10‘6, the root locations of the terms in the square brack-

ets in equation (34) become

S = -32
S = -30 %j57 (@ =64.5, @& =0.465)
S = -143 %j954 ( @ =964.3, g = 0. 1485)
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Thus equation (34), for the selected value of 163, reduces to

0=7 S( )( S +0.93 S +1 s* +0297 S )+ ! IAl
32 6452 64.5 964.3% 964.3 /(gf (C-35)

7

This can be restated as a root locus problem in /7' The root positions of

(35) as a function of /'l' are plotted in Figure C-6.

The most significant result of the locus is that the roots at S = 0 and
S = -32 combine and then cross the imaginary axis at S = +j40. Intermediate

values of '/2’3 result in roots exhibiting good damping and sufficiently high fre-

quency to result in very acceptable actuator response characteristics.

The most ideal range of /7‘ is not too obvious from this root locus. The
high-passcharacteristicsmost effectwe are between 5 and 100, 51nce/1 < 5
would produce low actuator response and a kta > 100 would possibly produce

unstable roots.

t
Since the optimum value of /7‘3 is unknown, values of 5, 15 and 50 are

used as examples in the following analysis.

K

One can now solve the -K'- root locus problem posed in equation (26).
Substitution of the values determined in Fig. C-6, equation (26) becomes, for
!
the /‘z‘s = 15 case

3
"( 412 s”)( S 099> +l)
o 68— -3 .

S
ao,m.sz—a—-ou)(’tJSH)

49



Figures C-7, C-8 and C-9 are the root locus plots of (36) for '/'z‘s of
5, 15 and 50. The present actuator on the X-15 has a valve gain, K, /A s
of 30. It is important to note that pressure feedback stabilization with gains
much less than 10 is not too effective. For gains of the order of 20 to 50,
the actuator exhibits good frequency response with no undamped roots and a
relatively wide bandwidth. Since the actuator phase lag is a major factor in
the amplitude of the residual oscillation resulting from hysteresis and dead
band non-linearities, it would be advantageous to have this higher actuator

frequency response and consequent smaller phase lags.

+

iR
. s
- -

W e
% i : LR
B
s, SNSRI S R
LA ¥ @"?;;;;635&" e .?. i:ﬁg%;ﬁ" 3’#4- -0
e i
e

uf-+os

FACTOR

o

X

SN
Sooe e
A 2
il : A
[ ] ;

DAMPING

Ra%
& e

\ .
£

R
‘,4
%

]

2y
+ il S ] ’l"l’l’:’gn
] Y 4 J 0789 T 5 43 789
oo s ¥ e

Figure C-7 Root Locus of Equation C-36 for T;l =5
and K, Changes

50

5 I
2
3 ': 17
”’ H ig:
flﬁ:"ll’lli’ i o l




ToTTTTTTEEEems

3

4

/T, ®]
- -6
K3 1.3xIO

Y EI{JTJ;,
SRR

-1
Figure C-8 Root Locus of Equation C-36 for T4 =15
and K, Changes

) il ' TR i

% + 50 sec™! X e ‘g‘-ﬁ i
) S

Ky = 13x10°6 % SRR

< W X

o 4200 —LB _ T A

4200 &7/56¢ s

o
it

G
A },.-‘\-, .
‘?@}%’; By

o.%‘..:
&? S
7 e, :?

S

& 3
- i .
L

i
i
i

Figure C-9 Root Locus of Equation C-36 for 'Z';I = 50
and K, Changes

51



% = 50 SEC” %,- 50 SEC”' o
. O Ml
92005 0er Ky * 1310 i
1O - -
w
0.l \
)
1
)
l
‘\
0.0l b PN i
| 0 sl 100
a2

Figure C-10 Amplitude Ratio vs. Frequency of Servo Actuator
for Selected Values of Ki/A, Ty and Ky

.K_‘ * 50 SEC” Yy =50 sec®
. . 6 _ LB
4200 F77sec FT/SEC Ky=!-3x107 5772 -
0 i
\\
© N
& -90 N
R
w
Y \\,.‘
N
Pl
-180 W——
- 270 \ S N SO SR T U O O U S,
10 fu 18| 100
1 4

Figure C-11 Phase Angle vs. Frequency of Servo Actuator
for Selected Values of K, /4 , Ty and Ky

52




L}

Figures C-10 and C-11 are amplitude ratio and phase angle plots of the

best case obtained in this analysis,

The major advantagesof pressure feedback can be listed as:

Resonant loads on the actuator are damped by the pressure
feedback loop.

Higher valve gains can be employed to increase actuator
frequency response.

The control system hysteresis and dead band which exist

in the present system and tend to stabilize or at least reduce
the tendency for the structural oscillation to be excited can be
reduced. This will reduce the low frequency residual oscillation
amplitude without making the system unstable at the high
frequency mode.

Servo piston support flexibility and bulk modulus effects which
are destabilizing are readily compensated for by pressure
feedback.

The reaction force transfer function (of the load back to the
piston) has the same characteristic equation as the output/input
displacement transfer function. Therefore, there are no struc-
tural resonance roots to make the SAS system unstable for the

necessary SAS loop gains.
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APPENDIX D

CALCULATION OF THE
CLOSED LOOP STABILITY CHARACTERISTICS OF THE SAS SYSTEM
EMPLOYING A PRESSURE FEEDBACK STABILIZED ACTUATOR

At g =0 and"for low frequencies where the surface is a rigid unit, the
roll acceleration, @ , resulting from a horizontal stabilizer angular accelera-
tion is proportional to the ratio of the product of inertia about the horizontal sta-
bilizer spindle axis and the moment of inertia of the fuselage. This is symbol-

ically stated as

2 = Zuy (D-1)
5 I
A @ ~»0 *

where the I" and Ix are the rigid body values. As the frequency of SA increases
the effective va changes because elements of the surface are moving at rates
different than the same elements of the rigid body would. This increase in the ef-

fective coupling can be approximated by a transfer function of the form

.o 5t Luy
@ I, b2
-~ sz s ( - )
SA T ? 28 —=—+1
Wy Dy,
@,, is the frequency at which the surface resonates and g is the damping ratio.

This is not an exact representation for two major reasons:

1. The value of Ixy changes with frequency in a different manner
than the lumped constant picture that this expression describes.
2. The roll mode of the fuselage couples with the surface motion

to produce a different transfer function.

A more exact approximation for the coupling between 8, and @ (ignoring

for this discussion higher frequency modes) could be expressed as

I
2
. 52k, X

- X
5. f 22 S
A -gn,«fzgw"u

(D-3)
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where the I(s is a factor to approximate more accurately the coupling term. It
is unlikely for any study of the horizontal surface that Ks would be outside the
range 1 < Ky < 2.

The actuator or surface output transfer function as a function of input
command angle, 34 /SA° , can be considered to be the same as the XC/X;
transfer function derived in Appendix C, since the scale factor for both is the

same, and they are otherwise analogous of each other.

Thus one is able to form a reasonably close representation of the

transfer function for low 9 conditions.

X
¢ = ¢ . SA = @ . C (D-4)
SA‘ SA 5*5 sA xi.
I K, |A
& __xy i Ruy Sad
= _Ts 5 s A_1Dl
eatnes + D*S
of 5’»,, BAA,  |D| %y S+l A |D| -2
This reduces to, for an actuator employing pressure feedback:
I s
X xy 3 *l
2 . KSI"S(KS) (D-6)
2 P) "
a, S 41053 4+i1)[-S_ +0m6_S_.
34.02 34./ 64.3% 64.3

The zero at S =~ —g— results from the actuator friction eventually appearing as
a viscous load. This term is generally negligible but is included since it entails
no additional computational difficulty. The resonant roots are cancelled becanse
the numerator of XC/X‘- contains a quadratic factor identical to the quadratic

factor in the denominator of ¢/SA .

For values of Ky =1.3x106, ¥, -0.02, and K, = 50,
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: s* (55 *)
'?_ Ay AT A S .
A X S S =
¢ (34.:' +1.06 34.1 ”)(54.3"’0'7’6 64.3”)
The SAS control loop block diagram can then be shown as:
RATE SAS 24 commans
GYRO FILTER — sgRvO
PILOT
12 [ @
S 5‘ oonnaupl
The open loop transfer function KG becomes
B s[4+ R N
KG = KK Xy 4450 1
%o | [T S s? s | s® s
'+I0 $/ +0.716 +/ .92 +1
34./ 34.0 " le4.32 64.3 188.2% /
| b Iy S -
— R —_
1 1
. 2 . " (D-8)
S S S S
——y 4 8 —=.
426.5 08 st EREC e

The roots of the characteristic equation ( ) + KG ) determinerthe stability

of the SAS loop.

Fig. D-1is a root locus of equation (8) for values of - K kg

IXV

X
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Figure D-1 Root Locus of SAS System Employing a

Pressure Feedback Stabilized Actuator

The gain at which roots cross the imaginary axis is approximately 0.07.

Dividing this by

I
xy
ks 5+ = 0.0253
x
yields K =2.765
Since the present system has been calculated to go unstable ata K = 0.1

with a load damping of 0.005, the gain improvement possible with a pressure feed-

back compensated actuator is very significant.
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APPENDIX E

PROPOSED ALL MECHANICAL PRESSURE FEEDBACK
VALVE CONFIGURATION

The requirements which must be fulfilled to realize a practical pres-

sure feedback valve for the present application are stated below:

1. The device should be all mechanical in operation.

.
v

The friction inherent in the hydraulic seals of the input rod

should have no detrimental effect on the operation of the

pressure feedback system.

3. The device should be relatively free from possible
sticking (at least as much so as a standard electro-
hydraulic valve).

4. Hydraulic wash-out networks would be preferred.

5. Amplification stages, unrealistic gearing and incorhpatible
spring sizes must be avoided if possible.

6. Easy disassembly for cleaning and inspection and no critical

adjustments would be desirable.
Requirement 1 is obvious and fulfilled.

Requirement 2 establishes the restriction that all pressure feedback
portions of the valve must be interior to the valve (i.e., require no

seals to the outside).

Requirement 3 is satisfied by the simple concentric design and the
relatively strong springs which are used. Also the shuttle and spool

can have circumferential grooves which help prevent sticking

Requirement 4 is inherent in the configuration presented by proper

orifice size, spring constants and areas.

Requirement 5 is fulfilled because of the available area and direct

connection to the main pressure ports.
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Requirement 6 is fulfilled because the complexity is hardly more

than the present valve,

Fig. E-11is a cut-away schematic of the proposed valve configuration.

VALVE SPOOL PRESSURE FEEDBACK SHUTFLE

E /

000
ANNNRANNNANNANNANNNNN
\ AANNNANNNNN

000
——

Figure E-1 Proposed Pressure Feedback Valve Configuration

The valve consists of a relatively standard body with two major concentric
movable elements called a shuttle and spool. The shuttle is deflected by

the ''washed-out'' pressure feedback signal which is obtained from the small

free piston and the orifice. This deflection is independent of the position of the

spool, the normal valve input element.

The springs at the end of the shuttle, in combination with the shuttle
end area and the free piston and its springs, determine the deflection sensi-

tivity of the shuttle for pressure differentials.

The displaced volume due to shuttle motion in combination with the
spring constants and the flow constricting orifice determine the “wash-out"
time constant for the valve. Changes in time constant can therefore be made

independently of pressure feedback gain, i.e., by changing the orifice.
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Other concentric configurations might possibly reduce leakage effects
by juggling the location of the high and low pressure regions. These nuances

of valve design are left to the experienced design engineer.
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APPENDIX F
THE SYNTHESIS OF TRANSPORT LAGS AND OTHER NETWORKS
USING FEEDFORWARD AND FEEDBACK TECHNIQUES

N (s)

Consider a transfer function having the form G(s) = D(s)- By a simple
summation or feedforward, one can form a new transfer function
D(s) + KN(s)
D(s)

H(s) = 1+KG(S)=

Thus a transfer function having a higher order complexity can be formed by a

simple summation.

-KS
i KG(S) = i
If, for instance, ) S3ra5+0 , then simple feedforward
would result in a transfer function
st+(a-K)S+b
H(s)=
S2+a8+b

I1f £ =2a, the transfer function would have the form of an all pass phase
shifter. A more complex problem which can be considered is of the form
(1 + G,IS))(1+Gg(S)) . This can be synthesized schematically by

G, (s)
G,(s)

.
o

G, (s)

b 4

+G,(s )+Ga(s )+G,Gols)e,
-(1+6,()) (16, () e,

As an example of the above general form, let the G (S) transfer function

be formed by the following circuit.
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The transfer function for any voltage source (zero impedance) has the form

{
e, KRC S

g; 2, 2 n (_q_)
RC > T RICE\W

If one then forms the product [I+ G, (s)][H Gg (S)] = [3(s)

where G: (s) = — ~ ‘ e

and G,(S) = - ®aC

the result will be

(Sz 2 S+ / | 2 2 s ! 2
Gs) = ®R,C " R2cY/ K, )(5 “R,Cc” TR,FCTY /«./z)
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This ratio of quartics is a transfer function having pole and zero locations
which are symmetrical around the imaginary axis as well as the real axis.
This can, by proper selection of the roots, be made the fourth order Pade

approximation to a time delay or transport lag.:

A schematic diagram of the network resulting from this approach to

the problem is
r r

A'A W AA%
— 4

gL KlR'

2
€ _[s?-z8ws+w? $%2-2¥,w, S+ W32
E<< Hzp’ el 534-2;“ a)'s -o-a)'z s"‘.zg‘ w‘s_‘,w'l

where K,"“;,z ;E,C =(U,g, ansz=gzz H ch:: wzz,’z

Numerical Example:

The polynomial expression of a fourth order Pade approximation for a

one-second delay is (Reference 7):

G(s) = S%-20s%+/805% - 8405 s/580
5%+ 2053 +/805%+ 8405 +1680

The quadratic factors of the numerator and denominator are
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G(s) = (52-11.585+ 46)(S*-8.425 +36.5)
(s +11.585+4¢)(5%+ 8.425 + 36.5)

therefore:
g, = .855 b= .698
W, = /Zg = 6.78 rad/sec @, = /36.5 = 6.04 rad/sec
K = .731 k; = . 486
B,C =1/(6.78x .855) = .173  BgC = 1/(.698 x 6.04) = .237
C =1uf R =173Ka R, = 237 KN
KR, = 126.5 KN K;®, = 115.2 KN

A practical computer circuit is therefore:
em | meg | meg
. A

1265 meg It 342 m Cour
[isores AN

| AT3meg | .176 meg

10K

AAN—
lut .N82meg
' _l‘uf” 257meg

The shifting of the poles of a function is quite often made possible by
feedback techniques. In a similar manner, the shifting of the zeros of a func-
tion is implemented by feedforward techniques. A combination of these two
methods, starting from a fairly simple initial transfer function, is a powerful
means toward the realization of complex transfer functions which would other-

wise be too complicated to synthesize economically.
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APPENDIX G
AEROELASTIC EFFECTS OF HORIZONTAL STABILIZER ON

AIRCRAFT ROLL AND AIRCRAFT PITCH TRANSFER FUNCTIONS
FOR STABILIZER PITCH INPUT

Introduction

This appendix presents briefly the equations of motion used in deriving
transfer functions for airplane rigid body roll and airplane rigid body pitch,
including the effects of the two lowest frequency stabilizer normal vibration
modes for stabilizer pitch input. Also included are numerical results for these
two transfer functions, as well as those for stabilizer spindle vertical shear,
spindle torque, and spindle bending moment at the fuselage, in terms of hori-
zontal stabilizer pitch as an input, in vacuo. In addition, the airplane pitch
and roll transfer functions, including the two stabilizer modes and damping
at high supersonic Mach numbers are presented. Aerodynamic damping terms
were derived using piston theory aerodynamics, assuming that the horizontal

stabilizer is a flat plate, and neglecting the wing.

Equations of Motion in Vacuo

The linearized equations of motion for displacement inputs to the hori-
zontal stabilizer for airplane rigid body roll in vacuo, including the two lowest

stabilizer normal modes, can be written:
My @+ MH M Hy = =M, (£,)

(G-1)

M216+M22ﬁl+wIZM33HJ -My, (8;)

My B+My Hy+ 0} Myg Hy = =My, (3,)
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or, in operational form:

smM,,
S*M,,

2
S M’I

S%M,, 5%M, ¢ls)T
(s*+w,?2)M,, o H, (s)
0 (Sz+a>,’)M3L __':‘2 (5)__]
. My

(G-2)

= airplane rigid body foll displacement, positive for right
stabilizer down, radians

= horizontal stabilizer pitch displacement, positive for
right stabilizer leading edge up, radians

= generalized coordinate for the first normal mode of
the horizontal stabilizer

= generalized coordinate for the second normal mode of
the horizontal stabilizer

= frequency of first stabilizer normal mode,

rad/sec

= frequency of second stabilizer normal mode,

rad/sec

= time, seconds
Jd2()
ot

A similar set of equations can be written for rigid body pitch, e (t),

which includes the two stabilizer normal modes.
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For rigid body roll, the M‘-j terms are defined as follows:

My = I,

i
i
] | Mz =2([ h ydn +f a,yndm)+aM,
i M = 2([, by ydm o, 3y ) + 4
Mg =2[sxydm =17

| I My = Mg

M,, -z(js (k.,)zdm + zj;, h,o, pdm 4-[(44,)3 )z’dm)+AMzz

M,.,=2(f‘ hyxdm+ . a,qum)-‘-AM"

My = M5

Mys= 2([ (k) dm+2[ h, &,y am +[ («,)* 0% dm) + AM,,
My = 2(,/s hyxdm+f a, X pdm) + AMs,

where one can define:

(%,4) and (E,y) ~ coordinates as defined in Figure G-1

h' (€), o, (§) ~ bending and torsion modal displacements at
and about the stabilizer elastic axis in the

normal mode of the stabilizer

f ~ indicates integration over one surface.
S
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I dm ~ an element of mass of the horizontal stabilizer



Figure G-1 X-15 Horizontal Stabilizer Plan View -
Coordinate Systems Used in Analysis of Appendix G
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In Table I are listed the lumped mass breakdown for the X-15 227 1b
horizontal stabilizer in terms of weights on, and weight unbalances and weight-
moments of inertia about, the swept elastic axis of the stabilizer. Also shown
in Table I are additional lumped weight on, and weight unbalance and moment
of inertia at the root station about the stabilizer spindle pitch axis. These
latter account for the large triangular section of the stabilizer forward of the

pitch axis at the root,

Table I NAA Stabilizer Lumped Weight Breakdown

Station, & w S« Iy
(along elastic (Weight) (Weight Unbalance) Weight Moment
axis), ft 1b 1b-ft of Inertia
1b-ft2

0.333 31.1 -9.62 33.6

1.50 41.0 2.36 60.0

2.62 34.7 3.80 46.9

3.79 29.0 2.28 29.3

4.91 22.4 1.07 14.7

6.09 18.4 2.96 7.18

At Station 0.333, at and about stabilizer spindle pitch axis:

¥ ¥ L 2

w S I,
1b . 1b-ft 1b-ft2

51.0 -86.7 215

The AMQ terms which account for this element of the stabilizer are as

follows:

- | ok,

AM,, Zyo' (S¢),[sm A(?F)/ +eos A (u,), ]

AM, = 2y, (5;), [sin .A.(—;-:l)ﬂzos./\. (43),]

ary = 2(50), [ (B) A () @), 5 2 A )P 05" A
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Maa = 2(02), [ sn A (530 ¢ cos A (o)

1

AMyy = 2(1:), [(-5?‘.) sin? AL +( )(“z) sin2 A\ +(d£z), cos ./\.]

AM“ = Z(I:)' [sin ./\.(aahg‘) + c,os_/\.(dlz).]
]

where N

(5: )‘ ’ (Id.)‘

(2% )' @)

is the sweep angle for the stabilizer elastic axis

are the lumped weight unbalance and moment of
inertia at the stabilizer root station about the

stabilizer spindle axis

are bending slope and torsional displacement
in the "t! stabhilizer normal mode at the stabilizer

root station about the stabilizer elastic axis

Table II lists the B; () and o; (E) for the two stabilizer normal

ﬁwdes in deriving the numerical results presented in this appendix,

Table I NAA Calculated Stabilizer Modal Deflections
e First Mode Second Mode
Station,
(along elastic ": «, kz o,
axis), it ft rad ft rad
0.333 0.087 0.0092 1.337 -4, 08
1,50 0.219 0.0105 1.155 -4, 88
2.62 0. 380 0.0120 1.061 -5, 64
3.79 0.565 0.0139 *1.024 -6.33
4,91 0,774 0.0163 1.015 -6.91
6.09 1.000 0.0201 1.000 -7.30
ok, h
H = 0.0993 (_._‘) = -0.220
o8 { 9K |
@, =91,0 rad/sec @, = 233.5 rad/sec
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The data presented in Tables I and Il were obtained from North Amer-
ican Aviation, Inc., Los Angeles, California. Table II data are from NAA
calculations for the 227 1b stabilizer based on measured stabilizer root flex-

ibility influence coefficients, and the stabilizer mass breakdown of Table I.
For rigid body pitch, @ (S), in Equation (G-2) is replaced by 6 (S) ,
and the MU and M  terms become:

M, =I,y

Mo =2[i(8,+x)(h, +pa)dm +AM,; = M,,
Mg = 2[5 (£ + %) (hy+na,)dm +AM,y = My,
My =2f (8,+%)%dm

where @(t) = aircraft rigid body pitch displacement, positive

nose up, radians

£(¢) = distance between aircraft pitch axis and stabilizer

pitch axis, assumed to be 16.0 feet for this analysis

AM,, =28, (S:), [sin./\.(-:—l;l) + cos ./\.(al,),]
!

AM,y =28, (5)), [ sin A\ (1;-;5) *005-/\-("‘:):]

tions, Equation (G-2).

and M34 terms are the same as for the roll equa-

Equations of Motion Including Aerodynamics

For Mach numbers above approximately M & 2.5, piston theory aero-
dynamjcs should be relatively accurate when applied to the X-15 horizontal
gtabilizer. As piston theory is a quasi-steady aerodynamic theory, the equa-
tions of motion including piston theory aerodynamics can be written explicitly

for very general time-dependent displacements.
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In operational form, for aircraft roll and two stabilizer normal modes,

and for a time-dependent stabilizer pitch displacement input, the equations of

motion are:

I O
2 - - ’
S M,,*SA;,g S®Ms+ SA', G S*M,5* SA 5 4 @(s)
+A,3 U +tA,3U
S*M,, "sA'ua (5*+w?)M,y3+5A5, ¢ SA%s g+A H, (s)
+Anil
2 ! - -
5My +5ALT SAgag+As g U (%)) Myg +5AY, 3 H,(9)
- tApyg U 1 L
S*M +SA,,G+ALR U |
s -
== | 5%Ma t A, G +A,, G
_5_3,4“ +SAga T+A4, U |
(G-3)
where the Mij terms are defined in a previous section, the A'ij terms
|

are aerodynamic damping coefficients, and the Aj

stiffness coefficients, and where:

C 3 W

fi

83/mu

free stream dymamic pressure, lb/ft‘l
Mach number

free styeam velocity, ft/sec
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It is theoretically possible to include effects of airfoil profile and thick-
ness in aerodynamic coefficients derived from piston theory. However, be-
cause of somewhat limited time available for these calculations, simpler co-
efficients were computed assuming the stabilizer was a flat plate. For the
same reason, only the aerodynamic damping terms were actually computed and
included in the numerical results presented. It is believed that the more im-
portant aerodynamic effects on control system behavior are still retained, al-
though the inclusion of profile and thickness in the aerodynamic coefficients
can result in a reduction of aerodynamic damping. It should be noted that the
wing aerodynamics are not included in the present results. The neglect of
wing aerodynamics means that the A',, term is much smaller than it would
otherwise be, that is, the aerodynamic damping in roll is considerably under-

estimated.

The A"'j terms are as follows (for aircraft roll and two stabilizer

normal modes):
A = fs y*dA
A, 'f‘g(h,n;a,)dA
Ay = ylh, +nes)dA
A, =fs xy dA
Aly =AY,
Az = (h+na,)? dA
A'ay =J (hy sn2y) Th, + ye,)dA
A e =Lx(h,+7a,)dA

L] - [}
Asn =Als
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A'gs=A'2s
A'ss ’f, (hy+yez)*dA

A'yy = [ x(hy 4 e ,)dA

where dA is an element of area of the stabilizer surface.

The equatiolns of motion for aircraft pitch, two stabilizer modes and
stabilizer pitch input displacement, including aerodynamics, are as in Equa-
tion (G-3) with @ (S) replaced by © (S) . The M;ij terms are as defined

for the in vacuo pitch case equations of motion, and the A;j terms as follows:
A, -f‘(.ltd-'x)‘dA
"a -f‘(ltw)(k,qa,)dA
A, -j; (8,4 %)(hy+ya,)dA
Al =S (8, +%) xaa
Ay = Ay

A',, =A'y

The remaining A"-j terms are as defined for the roll case.

Equations for Stabilizer Spindle Vertical Shear, Torque, and

Bending Moment at the Fuselage

For aircraft rigid body roll, two stabilizer normal modes and stabilizer
pitch input displacement in vacuo, the equations for stabilizer spindle vertical

shear, torque and bending moment at the fuselage (from one stabilizer) are:
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o . -— - - -
'

Vv (¢ | v, v, v, Vv, | [@#ae]
H,

T (¥) = T, T, T.’ ' T4

Mo | M oM oMy M| LB

or, in operational form:

viss | [vi v, vy v, | [99
H, (s)
T(s) |=S*3 T, T, T, T, (9
z (G-4)
M(s) M M, M, M, 5, (9)
where: V(t) = vertical shear, positive up, lb
T (¢) = spindle torque, positive in opposite sense for

positive &, , ft-1b

M('t) = gpindle bending moment, positive for upper fibers

of stabilizer spindle in compression, ft-1b

=f§ ydm

-], k4 yu,) dm + 8V

< <

<

==_/;i (hy+naz) dm + AVy

NS

=fsxdm
'=fs Xy dm
=/s x(k, +qa,)dm + AT,

Fen B

ot

[, x(k;+quz)am + ATy

T" 'fs ‘x;dm

7




M =S yy*dm

M, =fs y* (h,+ne,)dm+ oM,
M3=fs y*hy +qe,)dm + AM,
M4=fs'xy‘dm

4*= y-4,

Y, = distance from aircraft roll axis to stabilizer

b

root chord

aVy = (s.*), (a ') sin A+ (w,), cos A]

-

f: ;
AV, = (5;) ( E‘), sin /A "(““z), cos Ad
ok ]
AT, = (L} (—-i inA + (o, A
2= | 13 ), sinA+ (), cos
= (1"') [ (—a-ﬁ) sin A + (a,) cos A1
98/, .
AM, = g, cos A (S,:)I [(-‘;_,é’-) sin A+ (a,), cos .A.]
I
AM, = E cos A (S;)’ [ (-;—%—'—) sin A 4(@{2), aosA]
!

E’ = distance from stabilizer root chord to the
¥
stabilizer root mass station for (Sd.)l ’ (I;)’
(See Figure G-1).

For aircraft rigid body pitch, two stabilizer normal modes and stabili-
zer pitch input displacement, the equations are similar to (G-4) with @ (S)
replaced by ©(S) , and where _
\/' -‘/.5 (lt + X) dm
T; s,/.s y(lt"‘)l)dm

z ¥
M, = y* (4, + x)dm
with the remaining V|, T and M coefficients defined as for the roll casc.
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Transfer Functions

The desired transfer functions follow directly from the solutions of

Equations (G-2) and (G-3), and from Equation (G-4). Let

®(s) e(s)
V(s) T(S) M (s)
v(s) = ;;—-5 , t(S) = 5, (5) , m(S) = 5,05

After calculation of numerical values of the various terms involved, and sol-
ving Equations (G-2) and (G-3) for ﬁ(S) , and the corresponding pitch equa-
tions for @ (S) , there results

In vi.cuo, for aircraft roll;

0 0205 [

P(s) =

(s%+3)(s%+ w,2) + 0.3698 5% (5*+ w,3) - 1.350 53 (5% w, 3)]

z
Vg (8) = — —:—5 [0.9070 (524 0,2)(s%+w,?)-2.2635% (S*%+w,?)

+83/75%(5%w,2) +0.34345| +6.174 5* (G-6)
3
) = — 0.7379 (5%+ w2) (5% + w,* .01 52(s5%+ 0,2
ole) = 9(9) [ 9(S2+w2)(s*+w,*) +13.01 5% (5%+ w,2)
+13.685% (5%+ w,?)-16855%| +32.6157 (G-17)
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sz
= — 2,,,2\/c2 2y 2 (c2,,,3
mg (S) 09 [1.2/5(5 +0,2)(5%+w,%) - 1.27952 (534 w,3)
+171982(5%+w,2) +0.2279 54| + 13.68 5% (G-8)
where g(s) =(s*+0.2)(s?+w,2)- 0.01222 53 (5%+w,?)

—0.09187 52 (s2+ 0, %)

'[xx = 3600 slug-ft® has been assumed.

In vacuo, for aircraft pitch:

9

O(s) = —i—c—"—s-)- [14.29(5'40,')(5%40,’) —/.5505’(3‘+w,3)~/5.a/s'(s‘+a,')]

(G-9)

j10%s?
e [/.5 995103 (32 +0%)(3%+ 0,*)+(0.37601,, - 1795 210%) S¥(5% W)

~(0.15701 + 0.1231x 10%)s*(8% w,%) +0.5738 uo’s“] +32.6/ 5% (G-10)

1)“‘(5) 8-

10953
ty(S) =~ 209 [/a.m 10% (5%+w,3)(5%+ w,*)+(0.856 3T, - 3.204 1 10%)5* (5% w})
+(0.67001,, - 1476 v107)5%(5%+0,*)- 1.236 x lo-”s‘]+ 526/s% (G-11)
10%s* s
my(S) = - 209 [4.496 x103(s%+ w,*) (824 w,')+{/.o9ozw-z45/uo. )s* (53 ew),t)
~(0.90951,,, +o.0754/x/o')s‘(a'oa:,'hz./nuo’s‘] +1568 5° (G-12)
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where

a(s) =10° [54.35 I,y (s2+@,2)(S%+w,2)- 1417 x 10752 (52 +w,?)
-27/3 x 10% s (s’+w,2)]

IYY is in slug-ftz.

Including stabilizer aerodynamic damping (for M 3 2.5):
For Roll:

P(s) = "'k":'s'j [ua.v s*(s*w (5% w,%)+ 43923 S(S*+w (s &)
+43.895%(3%+ w?)-160.154(s% ) + 3176 § 83 (5%+ w2)

- 800./§ ST (5% +e.) + 25,59 (3) s (5% wY 4 662 () 3 (5%+ W)

+ 7,24 55- 30.84 () 54~ 60.35 ()3 53 | (G-13)
where
3 - %%/mu
@ = free stream dynamic pressure, 1b/ft2
M = free stream Mach number
U = free stream velocity, ft/sec

R(s) = 103 [5.86/ S*(5%+ @,2)(5%+w,2) +4.1097 S (S3+w,2)(5%+ w,?)
-0.07170 $4(3%+ ,2)- 0.5385 54(3% w,2) +0.46533 53 (5% w,?)
~2.5143 53(5%*+w,*)+0.3013 (§)* 52 (52 +w,3)+ 6.154(§)* 5% (524w 2)
~0./12835 S? +0.8245(3)* 5¢ +0.3088 (e})’s’]
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For Pitch:
¢ 2 2, .2
e - 2 - 2
®(s) = P05 (0.42785%+10.14 3 S)(s*+w, N5+ w?)
_[0-046725% 007328 5 53~ 06998 (35)* |(s2+,2)
-[0.4495 s%+113235%-20./0 (qS)’] (5%+ w,*)
- 0.20203 5% - 0.5299 (7)* 5% - 0.9566(3)% 57
(G-14)
where

P(s) = 10° ((5‘0. fsuo"rvy 52+ 29.743 S)(5%+w,A)(5*+w,?)
-[o.oam' $%+(0.2453-~ 3749 x /0'°IW) gs53-202/(3 s)’] (s2+w,3)
~[42435%+ (18.77-112.2 x 107%L,,)g S%-46.29(35)%] (5+,*)
~0.68585%+ (699 x10°°T,, - 2.646)(3)*5%- ﬁ:os'r(q)’s’}

Analysis of the Effects of Aerodynamic Damping

The fuselage roll to spindle axis angle transfer function, including aero-

dynamic damping (piston theory), has the form of Equation (G-13).
The terms in q' ) (ﬁ)z and ({)3 in the numerator are less significant
than the effect of the terms in é‘ , (Q’) 2 and ({)3 in the denominator at the

resonant frequencies.

Collecting terms in the denominator and using the values of
I, = 32.2x 3600 lb-ft2.
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A =588x10°5(5%0,2)(5%+w,2)+10° -0.01775%(s*+w,?)~0.5388 S¥(5% w,?)

L4

+ ’06 i {4-’09(5‘40‘1)(334%3)44_66 s? (534_@'2)*,0'492 s? (52,,, w}t}}

P

+10%Q) ( 0.30/3 5(5%+w,?) + 6.154S (S2+w0?)+0.824 s’}
+104(g)” {o.aoas s‘}
This simplifics to

exhibits reso-
nant frequency

-I'gz = {0.8963 5%+ 4.788x10% 53 + 293 x 108 s}

main damping
term

+g {/9./315% 725x10%5%*+293 x 10 “}

+(q)’{7.z79 s%4+28.40 » 104 s} frequency
modification

+(q)3(o. 3088 sl} | damping

modification

. . -l
raluss of 3 £ 10 uency and damnping changes resulting from (@)
-~ [ 4

Yaiuss -;'—
-

1.
and (q_)s are negligible. Therefore, the roots of the denominator can be found

(v
by
5]
(D

For th

3

from:

—lg-‘- = 0.8963 554 4.788 x /10?453 + 2.93 x 10®S

+9 {19431 s?+72.5x10*5%+2.93 « lo‘) =0

Restating, one can write

. sz Sz
o.nvoa.l(mNgjz +1)(,9“, +/) o

I+ z 3
e ey
215.49 83.94
This is in the form of a root locus problem in § . The effective ''gain"

0.1706 a for the region about the +j83.94 point can be calculated by geometry
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to be 0.151 3 = 0. 1706 '9' where ¥, is the radial distance from the j83.94

point. Since the departure angle of this locus is 180°,

7

5, = 83.9

~ Y

= 0.0135,
. OSg_

for O £ g 4]0 with reasonable accuracy.

In a similar fashion, one can calculate the '‘gain' in the region around
+j215.4 to obtain an expression for the damping available at the second resonant

mode,

One obtains 0.1706 ¢ = 0.495 7%
since g = £
2 2154

(z = 0.00/6 ¢

One can see from these results that thc aerodynamic damping is relatively

important for the first mode resonance but is rather small for the second mode.
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